Combining Functions Algebraically

These notes are intended as a summary of section 4.2 (p. 272 - 277) in your workbook. You should also read the section for more complete explanations and additional examples.

Adding Functions

The sum of two functions, $f(x)$ and $g(x)$, can be written as

$$
f(x)+g(x) \quad \text { or } \quad(f+g)(x)
$$

To draw the graph of $h(x)=f(x)+g(x)$, simply add the y-coordinates of $f(x)$ and $g(x)$ to get the y-coordinates of $h(x)$.

To evaluate $h(x)$ for a specific value of x, such as $h(2)$, simply add $f(2)$ and $g(2)$.
The domain of the function $h(x)$ is the set of values of x that $f(x)$ and $g(x)$ have in common.

Subtracting Functions

The difference of two functions, $f(x)$ and $g(x)$, can be written as

$$
f(x)-g(x) \quad \text { or } \quad(f-g)(x)
$$

To draw the graph of $h(x)=f(x)-g(x)$, simply subtract the y-coordinates of $g(x)$ from the y coordinates of $f(x)$ to get the y-coordinates of $h(x)$.

To evaluate $h(x)$ for a specific value of x, such as $h(2)$, simply subtract $g(2)$ from $f(2)$.
The domain of the function $h(x)$ is the set of values of x that $f(x)$ and $g(x)$ have in common.

Multiplying Functions

The product of two functions, $f(x)$ and $g(x)$, can be written as

$$
f(x) \cdot g(x) \quad \text { or } \quad(f \cdot g)(x)
$$

To draw the graph of $h(x)=f(x) \cdot g(x)$, simply multiply the y-coordinates of $f(x)$ and $g(x)$ to get the y-coordinates of $h(x)$.

To evaluate $h(x)$ for a specific value of x, such as $h(2)$, simply multiply $f(2)$ and $g(2)$.
The domain of the function $h(x)$ is the set of values of x that $f(x)$ and $g(x)$ have in common.

Dividing Functions

The quotient of two functions, $f(x)$ and $g(x)$, can be written as

$$
f(x) \div g(x) \quad \text { or } \quad(f \div g)(x)
$$

To draw the graph of $h(x)=\frac{f(x)}{g(x)}$, simply divide the y-coordinates of $f(x)$ by the y-coordinates of $g(x)$ to get the y-coordinates of $h(x)$.

To evaluate $h(x)$ for a specific value of x, such as $h(2)$, simply divide $f(2)$ by $g(2)$.
The domain of the function $h(x)$ is the set of values of x that $f(x)$ and $g(x)$ have in common, and that $g(x) \neq 0$.

Example 1 (sidebar p. 274)

Use $f(x)=x+2$ and $g(x)=|x|$.
a) State the domain and range of $f(x)$ and of $g(x)$.
b) Given $h(x)=f(x)+g(x)$, write an explicit equation for $h(x)$, then determine its domain and range.
c) Given $p(x)=f(x) \cdot g(x)$, write an explicit equation for $p(x)$, then determine its domain and range.

Example 2 (sidebar p. 275)
Use $f(x)=\sqrt{x}$ and $g(x)=x-2$.
a) State the domain and range of $f(x)$ and of $g(x)$.
b) Given $q(x)=\frac{f(x)}{g(x)}$, write an explicit equation for $q(x)$, then determine its domain and range.

Example 3 (sidebar p. 276)
Consider the function $h(x)=4+5 x+2 x^{3}$.
a) Write explicit equations for four functions $f(x), g(x), n(x)$, and $m(x)$ so that $h(x)=f(x)+g(x)+n(x)+m(x)$.
b) Write explicit equations for two functions $f(x)$ and $g(x)$ so that $h(x)=f(x)-g(x)$.

Example 4 (sidebar p. 277)

a) Given $p(x)=x^{2}-9$, write explicit equations for two functions $f(x)$ and $g(x)$ so that $p(x)=f(x) \cdot g(x)$.
b) Given $q(x)=x+1$, write explicit equations for two functions $f(x)$ and $g(x)$ so that $q(x)=\frac{f(x)}{g(x)}$.

